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ESDAS: Explorative Spatial Data Analysis 
Scale to predict spatial structure of 

landscape 
M.Gangappa Dr.C.Kiran Mai Dr.P.Sammulal 

Abstract: Cartographic scale definition of the hydrographic features is critical to display the geospatial data as 
computer aided maps. Discovering the landscape type that provides geographic context is significant to define 
cartographic scale.  Extensive coverage of the spatial gradients are generally used to distinguish the landscape type. 
The variation or change over from one type to other type landscape are with limited outliers and not instantaneous. 
Hence the classification of the landscape types is challenging. An exploratory spatial data analysis scale to learn and 
predict the landscape types in spatial data is described. This research defined a meta-heuristic scale to perform deep 
learning that extracts patterns from labeled spatial data of landscape types and further classifies the given unlabeled 
spatial data in to divergent landscape types. Cross validation and misclassification rate analysis are used to evaluate 
the proposed model. The paper explored the proposed explorative scale and its impact on the selection of landscape 
regions. The experiments evinced the scalability and robustness of the proposed explorative scale sensibility to 
recognize landscape diversity.  

Keywords: ESDAS, Hydrography, physiographic regions, landscape, geospatial data, Spatial Structures, Machine 
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1 INTRODUCTION 
The geographic context helps to understand the geospatial 
variations. The geographic context can be obtained from the 
characteristics of the structure and types of Land [1] [2] [3]. In 
other dimension the type detection of a landscape helps to 
define cartographic scale to represent hydrographic features. 
The heterogeneity of features those representing a specific 
type of landscape is the most critical factor to generalize the 
cartographies of the hydrographic features [4]. 
The terrain coarseness, wetness, and land covering structure 
are few among the significant factors those often uses to 
characterize the physiographic regions (also known as 
landscape). The methods that are often uses to define the 
landscape can distinguish by their processes such as manual 
definition and computer aided automatic region detection 
approaches.  
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This paper draws upon a maximum likelihood classification 
furnishing physiographic categorization of the given spatial 
data based on the features most frequently observed and 
specific to the types of landscape observed in labeled data 
given for training. Hence, unlike other traditional approaches, 
the dependency on specific predetermined features is nullified 
in this proposed model. 
The goal of this research is to define an explorative scale to 
refine the existing classification strategies, such that a classifier 
can distinguish the classes according to the features found as 
significant in given training data to furnish the optimal 
classification of the landscape (types).The types of landscapes 
adapted to explore the proposed approach are 

• The spatial features of Soil structure (wetness, 
dryness, type) 

• Spatial features of Forestry structure (plants, forests, 
groves and arboretums) 

• Valley Landscape Structure 
• Water resource structure  

The experimental study targeted to estimate the prediction 
accuracy by cross validation and misclassification scope. 
The rest of the paper describes the related work in section 2, 
proposed Explorative Spatial Data Analysis Scale in section3 
that followed by experimental study and performance analysis 
in section 4 and section 5 concludes the manuscript.  
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2 RELATED WORK 
The recent literature substantially evincing the role of SVM 
(support vector machines) to model the geospatial data with 
data validation accuracy [5] [6] [7]. Pozdnoukhov et al., [5] 
proposed an SVM based modeling of spatial data in order to 
define and redefine the monitoring networks. This model 
aimed to discover the prospective positions emerging 
measurement points. The model adapted the active learning 
strategy hence the prospective positions will be embedded to 
knowledge dynamically. The curse of dimensionality is often 
found in high dimensional space with limited data [8] [9].In 
order to this the appropriate methods and tools should be 
used to handle the curse dimensionality [10]. Hence the SVM, 
which insensible to the dimensionality of the space are 
superior [11]. Hence the existing models adapted the SVM in 
order to perform classification [5] [6] [7]. 
The majority of contributions found in contemporary 
literature related to prediction of physiographic regions by 
classifying the geospatial data are based on the machine 
learning algorithms [12] [13] [14][15][16][17]. The commonality 
of these models can be found at training phase. AT training 
phase of these methods, the data with predefined class labels 
are used to train the learning algorithms like Random Forest, 
Support Vector Machines and Artificial Neural Networks. The 
machine learning algorithms Random Forest (RF) and Support 
Vector Machines (SVM)are found to be optimal that compared 
to other such as Artificial Neural Networks (ANN).This is due 
to the insensitivity of RF and SVM towards dimensionality of 
the search space. Another commonality of all these studies is 
the use of predetermined features such as mean elevation, 
deviation of the elevation, density of bed-rock, and surface 
water occupancy as inland area, overflow, and mean slope. 
The overall assessment of these existing models indicating that 
the prediction accuracy depends on the given input spatial 
data for training. The prediction accuracy at its peak, if the 
labeled data given for training is evincing the significant 
contribution of features considered, else prediction accuracy is 
utterly low. Due to the extensive span of physio graphic 
regions and gradual variations between types of landscape 
and considerable absence of the features adopted for training, 
the prediction accuracy substantially varies from one to other 
input geospatial data. Another constraint of these existing 
models is that the features such as spatial domain and the 
physiographic region expansiveness are not considered [18] 
[19]. Unlike many of other domains the presence of expected 
features are sporadic in geospatial data, hence we argue that 
the selection features should be dynamic and specific to the 
given labeled data. 

3 EXPLORATIVE SPATIAL DATA ANALYSIS 
SCALE TO PREDICT SPATIAL STRUCTURE 
OF LANDSCAPE 

The ESDAS is an explorative scale that extracts patterns from 
the given labeled spatial structure data of landscape types Soil 
structure, forestry structure, Valley Landscape Structure and 
Water Resource Structure, and further defines a heuristic scale 
based on the correlation and variance observed between these 
patterns. In order to this the given spatial structures are 
partitioned into their respective categories of landscape types 
adapted. 
The spatial attributes involved in each spatial structure are 
considered as features of the respective category of landscape. 
Since the spatial structure contains dense number of spatial 
attributes and majority of them may be insignificant to 
respective landscape category of the spatial structure. 
Henceforth, the feature optimization process (see sec 3.1) will 
be carried out to eliminate these insignificant features. The 
spatial attribute value range will be discretized further to 
compare two spatial attributes through equality by 
approximation (see sec 3.2). Afterwards the confidence of each 
feature towards all categories of spatial structure data will be 
assessed (see sec 3.3) that follows the assessment of each 
spatial structure confidence against the features of all 
categories (see sec 3.4). Further the confidence obtained for 
each feature and spatial structure of respective category will 
be used as input to define the explorative spatial data analysis 
scales to estimate the scope of Soil structure, the forestry 
structure, Valley Landscape Structure and Water resource 
structure.  
3.1 Feature Optimization 

For each spatial structure context, the spatial structure 
dataset 1 2 | |{ ( ) , ( ) ,..... ( ) }

ii SS s i s i s i=   of size | |iS  will be 

considered for training towards defining explorative spatial 
data analysis scale. Each spatial structure is represented by 
values obtained for sequence of spatial attributes selected 
from respective spatial structure context. This description 
binds to all datasets of spatial structures representing Soil 
structures, Forestry structure, Valley Landscape Structure and 
water resource structure. 
Let 1 2 | |{ ( ) , ( ) ,..., ( ) }

nn SS s n s n s n=  be the set of spatial 

structures collected from all categories of the spatial structures 
except iD . The sets 1 2 | |{ ( ) , ( ) ,..., ( ) }

ii AA a i a i a i=  and

1 2 | |{ ( ) , ( ) ,..., ( ) }
nn AA a n a n a n=  are sequence of spatial 

attributes representing the features of spatial structures of iS  

and nS respectively. The feature value (spatial attribute value) 
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set 1 2 | ( ) |( ) { ( ) , ( ) ,... ( ) }
jj V iV i v ij v ij v ij=  be the set of spatial 

attribute values (feature values) observed for feature ( ) ja i  of 

spatial structures represented by iS . Similarly the feature 

value set 1 2 | ( ) |( ) { ( ) , ( ) ,... ( ) }
jj V nV n v nj v nj v nj= be the set of 

spatial attribute values observed for spatial attribute ( ) ja n  of 

spatial structures represented by nS . Further discussion refers 

the feature value (spatial attribute value) as spatial element. 
Since the spatial structure is the combination of numerous 
count of spatial attributes, the size of feature set can lead to 
process complexity. In order to overcome the process 
complexity, the insignificant spatial attributes should be 
identified and discarded. The spatial attribute ( ) ja i  of iA  is 

said to be insignificant feature, if spatial elements ( ) jV i  of 

( ) ja i  are almost similar to the spatial elements ( ) jV n  of 

feature ( ) ja n  of nA . Hence to identify the insignificant 

features, we adopt hamming distance that applied on values 
of each feature as vector from specific spatial structure and all 
other special structures. The hamming distance with 0 or less 
than the given threshold indicates that the respective feature is 
insignificant. The process of hamming distance is explored 
below: 
3.1.1 Hamming Distance 

The value of Hamming Distance obtained here is to denote the 
difference between spatial elements of same feature from 
specific spatial structure data to all other categories of spatial 
structure data. This is one of the significant strategy to assess 
the difference between two spatial elements in coding theory.  
The hamming distance between given vectors 

1 2{ , ,.........., }nCX cx cx cx=  and 1 2{ , ,........., }mCY cy cy cy=  of 
size n  and m  respectively will be measured as follows: 
Let CZ φ←  // is a vector of size 0 

{ 1,2,3,.....max( . )}foreach i i n m∃ =  Begin 
({ } { }) 0i i i iif  cx cx CX cy cy CY  then∃ ∈ − ∃ ∈ ≡  

3.1.2 { } { }i i i iCZ cx cx CX cy cy CY← ∃ ∈ − ∃ ∈  

Else 
1CZ ←  

End 
| |

1
{ }

CZ

CX CY
j

hd CZ i↔
=

= ∑  

// CX CYhd ↔  is the hamming distance between CX and CY ,

{ }CZ i  is the thi  element of the vector CZ  and | |CZ  is the 

size of the vector CZ  

3.2 Spatial Element and spatial structure Confidence 
Assessment 

  The spatial elements of optimal features and the spatial 
structures of respective data set will be used further to assess 
the spatial element and spatial structure confidence. 

In order to this, initially the spatial element pairs will be 
defined such that each pair contains two spatial elements 
(feature values) and each feature representing different feature 
of the same dataset. Then we assess the associability support 
of each spatial attribute pair. The associability support can be 
described as the ratio of spatial structures contains that pair 
against the total number of spatial structures in respective 
dataset.  The process of assessing associability support of each 
spatial attribute pair is described in following section (see sec 
3.2.1).     
3.3 Assessing spatial attribute pair correlation 

Let iP  be the set and contains all possible unique spatial 

element pairs from respective dataset iS . The possible unique 

spatial element pairs will found as follows:  
For each spatial structure ( ) js i  of respective dataset iS , find 

all possible unique pairs of spatial attributes and add to iP . 

Then correlation of each pair{ }j j ip p P∃ ∈ as follows. 

Let { }k k jv v p∃ ∈ and { }l l jv v p∃ ∈   be the two spatial 

attribute values paired as{ }j j ip p P∃ ∈ , then the correlation 

( )jcorr p of the pair jp   is   
| |

1
{1 { , } ( ) }

( )
| |

iS

k l m
m

i
i

v v s i
corr p

S
=

∃ ⊆
=
∑

 

//The ratio of number of spatial structures contain both spatial 
attributes against total number of spatial attributes 
The correlation of each pair of spatial attributes found in 
spatial structures of each respective spatial structure data set 
of Soil structure, forestry structure, Valley Landscape 
Structure, water source structure should be estimated using 
the process explored in sec 3.2.1. 
3.3.1 Assessing Spatial element and Spatial structure 

Confidence 

In order to assess the confidence of spatial attributes and 
spatial structures of respective dataset iS , a mutual relation 

graph will be formed between spatial structures and spatial 
attributes of respective iS . There will be an edge between a 

spatial attribute and spatial structure if and only if the selected 
spatial attribute exists in that spatial structure. Then each edge 
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between spatial attribute and spatial structure is weighted as 
follows.  
| ( )|

1
{ ( )}

V i

j jj
v v V i

=
∀ ∃ ∈ Begin 

| |

1
{ ( ) ( ) }

iS

k j kk
s i v s i

=
∀ ∃ ∈ Begin 

  0
jvw =  

{ }
| ( ) |

1
( )

ks i

m m k j mm
v v s i v v

=
∀ ∃ ∈ ∧ ≠   Begin 

{ , }m j mp v v=  

  ( ) ( )j mw v corr p+ =  

           End 

  ( )

( )
| ( ) | 1j k

j
v s i

k

w v
w

s i↔ =
−

 

 End 
End 
The weights obtained for edges between spatial attributes and 
spatial structures in mutual graph are further used to assess 
the spatial attribute and spatial structure confidence towards 
respective Soil structure, forestry structure, Valley Landscape 
Structure, Valley Landscape Structure and Water Resource 
structures. 
Further we measure the each feature confidence towards 
spatial structure dataset iS  as follow 
| ( )|

1
{ ( ) }

v i

j jj
v V i v

=
∀ ∃ ∋  Begin 

| |

1
{ ( ) ( ) ( ) }

i

j i

S

v S j k j i k
k

c w v s i v S s i⇒
=

= ∃ ∋ ∧ ∋∑  

//aggregating the weight of spatial attribute jv  towards each 

spatial structure ( )ks i  of respective dataset iS and the same is 

considered as the respective spatial element confidence 
towards dataset iS  

 End 
Similarly each respective spatial structure confidence towards 
spatial structure dataset iS  is measured as follows 
| |

1
{ ( ) ( ) }

iS

j i jj
s i S s i

=
∀ ∃ ∋  Begin 

| ( )|

( )
1
{ ( ) ( ) ( ) }

j i k i

V i

s i S k v S j k i j
k

c w v c s i v S s i⇒ ⇒
=

= ⊗ ∃ ∋ ∧ ∋∑  

// the sum of product of each spatial attribute weight and the 
respective spatial element confidence, such that the spatial 
attribute exists in selective spatial structure is the confidence 
of that spatial structure 
End 

The confidence of spatial attributes and spatial structures of 
each respective spatial structure data set of soil structure, 
forestry structure, valley landscape structure and Water 
Resource Structure should be estimated using the process 
explored in sec 3.2.2. 
3.4 Defining explorative spatial data analysis scales 

to divergent landscape structures adapted 

Further the confidence of spatial structures of datasets slS , 

fsS , vsS  and  wsS  
| |

( )
1
{ ( ) }

| |

sl

i sl

S

s sl S sl i
i

sl
sl

c S s sl
m

S

⇒
=

∃ ∋
=
∑

 //Aggregate mean 

of the respective spatial structures confidence of Soil structure 
dataset slS  

In order to identify the lower and upper bounds of slm , the 

mean absolute distance of slS  is assessed as follows 

( )
| | 2

( )
1

| |

sl

i sl

S

sl s sl S
ae i
sl

sl

m c
m

S

⇒
=

−
=
∑

 

Then the lower and upper bounds of slm is assessed as  
ae

sl sl slml m m= −  // lower bound of slm  
ae

sl sl slmu m m= +  // upper bound of slm  

Similarly explorative spatial data analysis scales for fsS
(forestry structure), vsS (Valley Landscape Structure) and wsS
(Water Resource Structure) 

| |

( )
1
{ ( ) }

| |

fs

i fs

S

s fs S fs i
i

fs
fs

c S s fs
m

S

⇒
=

∃ ∋
=
∑

 //Aggregate mean 

of the respective spatial structures confidence of Forestry 
Structure dataset fsS  

 The mean absolute distance of fsS  is 

( )
| | 2

( )
1

| |

fs

i fs

S

fs s fs S
ae i
fs

fs

m c
m

S

⇒
=

−
=
∑

 

Then the lower and upper bounds of fsm is assessed as  
ae

fs fs fsml m m= −  // lower bound of fsm  
ae

fs fs fsmu m m= +  // upper bound of fsm  
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| |

( )
1
{ ( ) }

| |

vs

i vs

S

s vs S vs i
i

vs
vs

c S s vs
m

S

⇒
=

∃ ∋
=
∑

 //Aggregate mean 

of the respective spatial structures confidence of Valley 
Landscape Structure dataset vsS  

The mean absolute distance of vsS  is 

( )
| | 2

( )
1

| |

vs

i vs

S

vs s vs S
ae i
vs

vs

m c
m

S

⇒
=

−
=
∑

 

Then the lower and upper bounds of vsm is assessed as  
ae

vs vs vsml m m= −  // lower bound of vsm  
ae

vs vs vsmu m m= +  // upper bound of vsm  
| |

( )
1
{ ( ) }

| |

ws

i ws

S

s ws S ws i
i

ws
ws

c S s ws
m

S

⇒
=

∃ ∋
=
∑

 //Aggregate mean 

of the respective spatial structures confidence of Water 
Resource Structure dataset wsS  

The mean absolute distance of wsS  is 

( )
| | 2

( )
1

| |

vs

i ws

S

ws s ws S
ae i
ws

ws

m c
m

S

⇒
=

−
=
∑

 

Then the lower and upper bounds of wsm is assessed as  
ae

ws ws wsml m m= −  // lower bound of wsm  
ae

ws ws wsmu m m= +  // upper bound of wsm  

3.5 Predicting the state of spatial structure 

The explorative spatial data analysis scales devised (see 
section 3.3) will be used further to assess the spatial structure 
type (soil, forestry, valley or water structure) of a given spatial 
structure e . The confidence of given spatial structure 

{ }

{ }

| ( )|

1
| ( )|

1

( ) ( )

( ) ( )

sl

i

sl sl

j

V S

v sl i i sl i
i

s S V S

v sl j j sl
j

c w v v V S s v
c

c w v v V S

⇒
=

⇒

⇒
=

⊗ ∃ ∈ ∧ ∋
=

⊗ ∃ ∈

∑

∑
 

// the aggregate of product of each spatial element confidence 
and weight, which divides by the aggregate of confidence of 
all spatial elements exist in ( )slV S . 

 
Further the confidence of S  towards fsS , vsS  and wsD  

assessed as: 

{ }

{ }

| ( )|

1
| ( )|

1

( ) ( )

( ) ( )

fs

i

fs fs

j

V S

v fs i i fs i
i

s S V S

v fs j j fs
j

c w v v V S s v
c

c w v v V S

⇒
=

⇒

⇒
=

⊗ ∃ ∈ ∧ ∋
=

⊗ ∃ ∈

∑

∑
 

// the aggregate of product of each spatial element confidence 
and weight, which divides by the aggregate of confidence of 
all spatial elements exists in ( )fsV S . 

{ }

{ }

| ( )|

1
| ( )|

1

( ) ( )

( ) ( )

vs

i

vs vs

j

V S

v vs i i vs i
i

s S V S

v vs j j vs
j

c w v v V S s v
c

c w v v V S

⇒
=

⇒

⇒
=

⊗ ∃ ∈ ∧ ∋
=

⊗ ∃ ∈

∑

∑
 

// the aggregate of product of each spatial element confidence 
and weight of that exists in ( )vsV S  and e , which divides by 

the aggregate of confidence of all spatial attributes exists in
( )vsV S . 

{ }

{ }

| ( )|

1
| ( )|

1

( ) ( )

( ) ( )

ws

i

ws ws

j

V S

v ws i i ws i
i

s S V S

v ws j j ws
j

c w v v V S s v
c

c w v v V S

⇒
=

⇒

⇒
=

⊗ ∃ ∈ ∧ ∋
=

⊗ ∃ ∈

∑

∑
 

// the aggregate of product of each spatial element confidence 
and weight of that exists in ( )wsV S  and e , which divides by 

the aggregate of confidence of all spatial attributes exists in
( )wsV S . 

Then these confidence values of spatial structure e  with 
respect to slS , fsS , vsS and wsS  will be used to estimate the 

given expression state is Water Resource Structure, Soil 
structure, Forestry structure or Valley Landscape Structure 
according to the following conditions. 

( ) ( )
||

( ) ( )

( ) ( )

( ) ( )

s sl sl e fs fs

e vs vs e ws ws

s sl sl e fs fs

e vs vs e ws ws

c mu c m
c m c m

c m c ml
c ml c ml

⇒ ⇒

⇒ ⇒

⇒ ⇒

⇒ ⇒

≥ ∧ ≤ ∧ 
 

≤ ∧ ≤ 
≥ ∧ ≤ ∧ 

 
≤ ∧ ≤ 

 

Soil structure 

( ) ( )
||

( ) ( )

( ) ( )

( ) ( )

s fs fs e sl sl

e vs vs e ws ws

s fs fs e sl sl

e vs vs e ws ws

c mu c m
c m c m

c m c ml
c ml c ml

⇒ ⇒

⇒ ⇒

⇒ ⇒

⇒ ⇒

≥ ∧ ≤ ∧ 
 

≤ ∧ < 
≥ ∧ ≤ ∧ 

 
≤ ∧ < 

 

forestry 
structure 
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( ) ( )
||

( ) ( )

( ) ( )
( ) ( )

s vs vs e sl sl

e fs fs e ws ws

s vs vs e sl sl

e fs fs e ws ws

c mu c m
c m c m

c m c ml
c ml c ml

⇒ ⇒

⇒ ⇒

⇒ ⇒

⇒ ⇒

≥ ∧ ≤ ∧ 
 ≤ ∧ ≤ 

≥ ∧ ≤ ∧ 
 ≤ ∧ ≤ 

 

Valleystructure 

( ) ( )
||

( ) ( )

( ) ( )
( ) ( )

s ws ws e sl sl

e fs fs e vs vs

s ws ws e sl sl

e fs fs e vs vs

c mu c m
c m c m

c m c ml
c ml c ml

⇒ ⇒

⇒ ⇒

⇒ ⇒

⇒ ⇒

≥ ∧ ≤ ∧ 
 ≤ ∧ ≤ 

≥ ∧ ≤ ∧ 
 ≤ ∧ ≤ 

 

Water resource 
structure  

4 EXPERIMENTAL STUDY 
The experimental study was carried out on a set of spatial 
structures taken from multiple benchmark datasets [19]. The 
number of spatial structures used are 1114, which are the 
combination of Soil structure (286 records), Forestry structure 
(275 records), Valley Landscape Structure (277 records) and 
Water Resource Structure condition (276 records). The spatial 
structures of respective category are considered as separate 
datasets labeled as slS , fsS , vsS and wsS .Each dataset 

partitioned into test and training sets. The 75% of spatial 
structures of each dataset are considered as training set and 
rest 25% of spatial structures considered as test set. In order to 
estimate the specificity (recognizing untrained spatial 
structure type prediction) of the proposed model, the 
significant percent (15%) of uncategorized spatial structures 
included into test data. 
The explorative spatial data analysis scales obtained from the 
given training set were explored in table 1. 
 

slm  0.582474187 

ae
slm  0.095593654 

slml  0.486880533 

slmu  0.678067841 

fsm  0.615957277 

ae
fsm  0.103864099 

fsml  0.512093178 

fsmu  0.719821376 

vsm  0.646638853 

ae
vsm  0.099722167 

vsml  0.546916686 

vsmu  0.74636102 

wsm  0.631593026 

ae
wsm  0.068999373 

wsml  0.562593653 

wsmu  0.700592398 

Table 1: The explorative spatial data analysis scales obtained from 
training data  

True Positives 265 
True Negatives 40 

False Positives( records predicted wrongly)  12 
False Negative (records are not in either of the 4 

landscape types)  
5 

Categorized (Soil, forestry, Valley Landscape 
and water resource) spatial structure Prediction 
Value (positive prediction value, PPV) 

0.9566787 

uncategorized spatial structure Prediction 
Value (Negative Prediction value, NPV) 

0.888888889 

Detection Accuracy 0.947204969 
Categorized (Soil, forestry, Valley Landscape 
and water resource) spatial structure prediction 
Rate (True Positive Rate or sensitivity) 

0.946428571 

Uncategorized spatial structure Prediction rate 
(True Negative Rate or specificity) 

0.952380952 

Table 2: The prediction statistics of the ESDAS 
The 322(soil structure: 72, forestry structure: 69, valley 
landscape structure: 70, water resource: 69 and 
uncategorized:42) spatial structures were used to assess the 
prediction accuracy of the proposed ESDAS. The ESDAS 
assessed the given input spatial structures such that 265 
spatial structures are true positives (the detection of soil, 
forestry, valley landscape and water resource structures are 
true), 12 spatial structures are false positive (2 uncategorized 
spatial structures predicted as valley structure and 10 are 
falsely detected as soil structure, forestry structure, valley 
landscape structure or water resource structure), 40 spatial 
structures are true negatives (detecting spatial structures as 
uncategorized spatial structure is true) and 5 spatial structures 
are false negative (detecting spatial structures as 
uncategorized structure is false).  

 
Fig 1: Statistical Metrics and their values observed 
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Hence the positive prediction value (landscape structure 
prediction value) is 0.96, negative prediction value 
(uncategorized structure prediction value) is 0.89, the 
landscape structure detection rate (also known as sensitivity) 
is 0.95, the uncategorized structure detection rate (also known 
as specificity) is 0.95 and the overall success rate (also known 
as accuracy, which is the ratio between true prediction of all 
types of spatial structures and all given number of spatial 
structures) is 0.95. These statistics indicating that the ESDAS is 
significant to identify the landscape types with success 
percentage of 95% (since sensitivity is 0.95), and the success 
rate of detection of uncategorized Structure cases is also 95% 
(since specificity is 0.95). Hence the Model ESDAS is scalable 
and robust to predict the spatial structures of soil, forestry, 
valley and water resource landscapes. The prediction statistics 
observed from the experimental study of the ESDAS are 
visualized in fig1. 

5 CONCLUSION 
The recent contributions in contemporary literature evincing 
that the role of machine learning spanned to many challenges 
related to spatial data. The environmental data that is of the 
discriminative features, the relevant information retrieval 
strategies such as discovery of spatial and temporal patterns, 
exploratory analysis of spatial data, classification and decision 
making often relies on Machine learning algorithms. Due to 
the less outliers and gradual changeovers from one type to 
other landscape type, the information retrieval tasks like 
classification, pattern discovery demands deep learning of the 
features at machine learning tasks to achieve the accuracy at 
knowledge discovery. In this regard this manuscript proposed 
an Explorative Spatial Data Analysis Scale to perform deep 
learning in order to extract patterns and further using this 
knowledge to classify the landscape (types) with accelerated 
optimality. The experimental results indicating that the 
success classification of landscape types is 93%. This 
prediction rate is phenomenal since the spatial data features 
are highly influenced by the curse of dimensionality and 
variance. The future research can classify the landscape types 
by using evolutionary strategies with ESDAS as cost or fitness 
function. 

REFERENCES 
[1] Moglen, G. E., Eltahir, E. A., & Bras, R. L. (1998). On the 

sensitivity of drainage density to climate change. Water 
Resources Research, 34(4), 855-862. 

[2] Tucker, G. E., & Bras, R. L. (1998). Hillslope processes, drainage 
density, and landscape morphology. Water Resources Research, 
34(10), 2751-2764. 

[3] Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). 
Statistical analysis of drainage density from digital terrain data. 
Geomorphology, 36(3), 187-202. 

[4] Touya, G. (2008, June). First thoughts for the orchestration of 
generalisation methods on heterogeneous landscapes. In 
workshop on generalisation and multiple representation, 
Montpellier, France. 

[5] Pozdnoukhov, A., &Kanevski, M. (2006). Monitoring network 
optimisation for spatial data classification using support vector 
machines. International journal of environment and pollution, 
28(3-4), 465-484. 

[6] Bayro-Corrochano, E., Vazquez-Santacruz, E., Moya-Sanchez, E., 
& Castillo-Muñis, E. (2015). Geometric Bioinspired Networks 
for Recognition of 2-D and 3-D Low-Level Structures and 
Transformations. 

[7] Kanevski, M., Pozdnoukhov, A., &Timonin, V. (2009). Machine 
learning for spatial environmental data: theory, applications, 
and software. EPFL press. 

[8] Friedman, J., Hastie, T., &Tibshirani, R. (2001). The elements of 
statistical learning (Vol. 1). Springer, Berlin: Springer series in 
statistics. 

[9] Haykin, S., & Network, N. (2004). A comprehensive foundation. 
Neural Networks, 2(2004). 

[10] Lee, J. A., &Verleysen, M. (2007). Nonlinear dimensionality 
reduction. Springer Science & Business Media. 

[11] Vapnik, V. (2006). Estimation of dependences based on empirical 
data. Springer Science & Business Media. 

[12] Foody, G. M., &Mathur, A. (2004). A relative evaluation of 
multiclass image classification by support vector machines. 
IEEE Transactions on geoscience and remote sensing, 42(6), 
1335-1343. 

[13] Ham, J., Chen, Y., Crawford, M. M., &Ghosh, J. (2005). 
Investigation of the random forest framework for classification 
of hyperspectral data. IEEE Transactions on Geoscience and 
Remote Sensing, 43(3), 492-501. 

[14] Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An 
assessment of support vector machines for land cover 
classification. International Journal of remote sensing, 23(4), 
725-749. 

[15] Pal, M. (2005). Random forest classifier for remote sensing 
classification. International Journal of Remote Sensing, 26(1), 
217-222. 

[16] Song, X., Duan, Z., & Jiang, X. (2012). Comparison of artificial 
neural networks and support vector machine classifiers for land 
cover classification in Northern China using a SPOT-5 HRG 
image. International Journal of Remote Sensing, 33(10), 3301-
3320. 

[17] Waske, B., & Braun, M. (2009). Classifier ensembles for land 
cover mapping using multitemporal SAR imagery. ISPRS 
Journal of Photogrammetry and Remote Sensing, 64(5), 450-457. 

[18] Gahegan, M. (2000). On the application of inductive machine 
learning tools to geographical analysis. Geographical Analysis, 
32(2), 113-139. 

[19] Heumann, B. W. (2011). An object-based classification of 
mangroves using a hybrid decision tree—Support vector 
machine approach. Remote Sensing, 3(11), 2440-2460. 

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	2 RELATED WORK
	3 EXPLORATIVE SPATIAL DATA ANALYSIS SCALE TO PREDICT SPATIAL STRUCTURE OF LANDSCAPE
	3.1 Feature Optimization
	3.1.1 Hamming Distance

	3.2 Spatial Element and spatial structure Confidence Assessment
	3.3 Assessing spatial attribute pair correlation
	3.3.1 Assessing Spatial element and Spatial structure Confidence

	3.4 Defining explorative spatial data analysis scales to divergent landscape structures adapted
	3.5 Predicting the state of spatial structure

	4 EXPERIMENTAL STUDY
	5 CONCLUSION
	REFERENCES



